
Code Agents — Security

Learning Objectives

• Threat model for code agents; identify
high-impact risks

• Map risks to concrete defenses and CI policy
gates

• Design sandboxing, approvals, resource limits

• Plan monitoring, replay, and incident response

THREAT MODEL & ATTACK SURFACE

DEFENSES & CONTROLS

VCS/CI

Attack Surface (inputs → tools →
sandbox → CI)

Agent Workspace (trusted boundary)

Untrusted
Inputs

(issues, docs,
URLs)

Retriever/
Parser

Planner/
LLM

Tools
(shell, pkg
mgr, DB)

Execution
Sandbox

Secrets/Keys

text/
code

prompts/
state tool calls

run code needs creds?

CI feedback

PR/diff

Prompt & Indirect Injection
Risk: Malicious instructions embedded in comments, docs, or tickets can

hijack LLM behavior.

WHY ARE WEB AI AGENTS MORE VULNERABLE THAN STANDALONE LLMS? A SECURITY ANALYSIS

Prompt/indirect injection via docs/comments/tickets

https://arxiv.org/abs/2502.20383

Prompt & Indirect Injection
Risk: Malicious instructions embedded in comments, docs, or tickets can

hijack LLM behavior.

Commercial LLM Agents Are Already Vulnerable to Simple Yet Dangerous Attacks

Prompt/indirect injection via docs/comments/tickets

https://arxiv.org/abs/2502.08586

Prompt & Indirect Injection
Risk: Malicious instructions embedded in comments, docs, or tickets can

hijack LLM behavior.

Mitigation:

• Sanitize inputs from external sources.

• Use structured prompts and schemas.

• Isolate prompt contexts.

Prompt/indirect injection via docs/comments/tickets

Insecure Output Handling

Unsafe Execution of Model Outputs

Risk: AI-generated shell, SQL, or JS code may be executed without

validation.

Mitigation:
• Validate and sanitize all model outputs.

• Use allowlists and wrappers for execution.

• Require human review for sensitive actions.

Insecure output handling (model text → shell/SQL/JS without validation)

Secrets Leakage

Exposure of Sensitive Data

Risk: Secrets (API keys, tokens) may leak via logs, PRs, or artifacts.

Mitigation:
• Use secret scanning tools.

• Avoid logging sensitive inputs.

• Rotate and scope credentials tightly.

Secrets leakage via logs/PRs/artifacts; repo traversal/clobber

Network Abuse

External Communication Risks
Risk:

• SSRF --- Internal resource access via crafted external requests

• Unpinned downloads --- Unverified packages or files; risk of

tampering

• Data exfiltration --- Sensitive data sent to attacker-controlled
endpoints

via network calls.

Mitigation:

• Deny default network access
• Pin dependencies and validate URLs

• Monitor outbound traffic

• Apply domain allowlists

• Restrict agent permissions:

• Read-only vs. read-write workspaces
• No default network access

Network abuse (SSRF, unpinned downloads, data exfil)

Dependency Supply Chain Risks

Malicious Packages and Typosquatting

Risk:

• Typosquatting: Fake packages with similar names to popular ones

(e.g., reqests vs requests)

• Postinstall Scripts: Code that runs automatically after install; can execute

malware
• Licenses: Risk of using incompatible or legally restricted packages

Mitigation:

• Use trusted registries

• Pin versions
• Scan for license compliance

• Block install-time scripts

Dependency supply-chain (typosquatting, postinstall scripts, licenses)

Key Risks (coding agents)

• Prompt/indirect injection via
docs/comments/tickets

• Insecure output handling (model text →
shell/SQL/JS without validation)

• Secrets leakage via logs/PRs/artifacts; repo
traversal/clobber

• Network abuse (SSRF, unpinned downloads, data
exfil)

• Dependency supply-chain (typosquatting,
postinstall scripts, licenses)

DEFENSES & CONTROLS

Architecture & Policy

• Least privilege: read-only vs read-write
workspaces; no default network

• Approvals for sensitive actions; structured tool
schemas

• Ephemeral containers/VMs per task;
resource/time limits

• Provenance & signing: SLSA levels;
Sigstore/Cosign

Validation Gates (CI)

• SAST/taint (Semgrep/CodeQL); secret
scanning; license checks

• Coverage & diff thresholds; test requirements

• Command allowlists for shell;
network/domain allowlists

• Block on policy violations; warn on low-risk
issues

Policy Snippets
Ready-to-use CI/CD security controls

Shell Wrapper (YAML)
• allowed_cmds: pytest, ruff, black, mypy, npm ci, npm test

• deny_network: true

• max_write_paths: src/**, tests/**

• block_patterns: rm -rf /, curl http://

Coverage/Diff Gates (YAML)

• min_coverage_delta: 0

• max_files_changed: 5

• require_tests_updated: true

Sigstore/Cosign (Bash)

cosign sign --keyless dist/*.whl

cosign verify --keyless dist/*.whl

SLSA Provenance (YAML)

slsa_provenance: required

attestors: ["github-actions","ci-bot"]

Security Checklists (printable)
Phase Checklist

Before Run Pin deps; sandbox; no default network;
read-only creds; enable logs

During Run Record commands/diffs; approvals for
sensitive actions; scan outputs; time/CPU
caps

Before Merge SAST clean; tests/coverage pass;
license/secret checks; reviewer sign-off

After Merge Monitor; rotate ephemeral creds; incident
retrospective

Reading — Lecture 2

• OWASP Top 10 for LLM Apps (2025)

• CSET: Cybersecurity Risks of AI-Generated
Code (2024)

• Do Users Write More Insecure Code with AI
Assistants? (ACM/ArXiv)

• SLSA spec; Sigstore/Cosign quickstart;
Semgrep & CodeQL intros

• Veracode 2025 GenAI Code Security Report;
Apiiro 2025 risk study

	Slide 1: Code Agents — Security
	Slide 2: Learning Objectives
	Slide 3: Threat Model & Attack Surface
	Slide 4: Attack Surface (inputs → tools → sandbox → CI)
	Slide 5: Prompt & Indirect Injection
	Slide 6: Prompt & Indirect Injection
	Slide 7: Prompt & Indirect Injection
	Slide 8: Insecure Output Handling
	Slide 10: Secrets Leakage
	Slide 11: Network Abuse
	Slide 13: Dependency Supply Chain Risks
	Slide 16: Key Risks (coding agents)
	Slide 17: Defenses & Controls
	Slide 18: Architecture & Policy
	Slide 19: Validation Gates (CI)
	Slide 20: Policy Snippets
	Slide 21: Security Checklists (printable)
	Slide 22: Reading — Lecture 2

