Code Agents — Code
generation &
debugging



Learning Objectives

Interpret benchmark
results; pick
meaningful metrics

Define code agents Diagram architecture Design Execute a closed-
and contrast with & trust boundaries retrieval/context loop debugging cycle;
completion-only (AClI, tools, memory, plans; budget tokens capture artifacts
tools harness) effectively




WHAT IS A CODE
AGENT?



Definition & Scope

Environment: editor + shell + test harness
+ Version Control System/Continuous
Integration via Agent Computer Interface

Inputs: issue/ticket, repo files, docs;
Outputs: diffs/PRs & test results

Not just code completion; **closed loop™* with execution
feedback




Why “closed loop”

is essential

Closed loop: the
agent doesn’t just
generate code and
stop, it

> runs the
code/tests,

> observes
results,

» and edits again
until acceptance
criteria are met



Benefits of “closed loop”

Grounding in reality: Execution results (pass/fail, stack traces)
cut through hallucinations and guesswork.

Objective success signal: Continuous Integration/test
outcomes define “done,” not the agent’s confidence.

Smaller, safer diffs: Iteration encourages minimal patches with
clear effects.

Better debugging: Failures become data the agent can use to
localize bugs.

Reproducibility & auditability: Each cycle leaves artifacts
(diffs, logs, CI runs).

Safety hooks: The loop runs inside a sandbox with gates
(coverage, SAST, secret scans), so risky edits get blocked early.



Benefits of ‘closed loop

X

Grounding Smaller,
in reality safer diffs
Safety hooks Better debugging
Reproducibility Reproducibility

& auditability & auditability



Mental model (pseudocode)

while not acceptance_criteria_met:
plan = analyze(issue, context)
patch = propose minimal diff(plan)
apply(patch)
results = run_harness() # tests, lint, build, coverage
if results.green:
open or update PR(patch, results)
break
else:
diagnose(results) # read failing tests/tracebacks
refine_plan()



Agent-Computer Interface (trusted runtime)

— e e e = e e = = e = = - — = = = e = = = — = = = = = —— — = = — —— = — — — —

- [ [=) Task Spec ]
v
& Context Gatherer W
i : ;
& Planner / Policy
: v 1
Feedback | () Code fenerator —
$a3 Tooling

: v _ Feedback
Execution Harness

&
—  @vcs/cl  |J+—

A\ Feedback

e po e o o . S S s . S oo ooy’ g o o o o S— " s o — S w— . — o " . o . s — - p— oo oy - ot




Context Strategies for Large Repos

Embed & retrieve: files, symbols, docs, issues
(rank by task relevance)

Static signals: call graph, imports, types,
ownership metadata

Budget: prioritize high-signal snippets;
iterative retrieval

Determinism: cache retrieval results for
reproducible runs



Generation Patterns

Spec-first: restate requirements; define
acceptance tests

Scaffold-first: create stubs/interfaces:; fill
post-tests

Diff-first: **unified patches™** to minimize
churn

Decompose: small, verifiable steps vs.
monolithic changes



Debugging Loop (execution-guided)

* Run tests/build; capture errors, logs, coverage
e Localize fault (binary search, delta debugging)

* Hypothesize cause; **minimal fix**;
regenerate

e Selective re-runs; stop criteria: tests pass +
coverage > baseline



Evaluation & Benchmarks

SWE-bench & SWE-bench Verified: real
issues/PRs in multi-file repos

SWE-agent ACl improves agent performance
on SWE-bench (reported 12.5% pass@1)

DebugBench/DebugEval: bug
localization/repair tasks

Metrics: build-green rate, time-to-green, diff
churn, coverage A, flake rate



In-Class Activity (10-15m)

_ =

Plan Subgoals + acceptance tests

Retrieval set Top files/symbols to inspect (with
rationale)

Patch outline 1-3 edits with expected test impact

Risks 2 risks + quick mitigations



Reading — Lecture 1

SWE-bench (arXiv 2310.06770); SWE-bench
Verified (OpenAl, 2024/25)

SWE-agent (arXiv 2405.15793; NeurlPS’'24)
OpenHands (arXiv 2407.16741; OpenReview)
AutoCodeRover (arXiv 2404.05427)
Self-Debug (ICLR’24); Reflexion (NeurlPS’23)
DebugBench/DebugEval (2024-25)



https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2407.16741
https://arxiv.org/abs/2407.16741
https://arxiv.org/abs/2404.05427
https://arxiv.org/abs/2404.05427
https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2401.04621
https://arxiv.org/abs/2401.04621
https://arxiv.org/abs/2408.05006

	Slide 1: Code Agents — Code generation & debugging
	Slide 2: Learning Objectives
	Slide 3: What is a Code Agent?
	Slide 4: Definition & Scope
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Mental model (pseudocode)
	Slide 9
	Slide 11: Context Strategies for Large Repos
	Slide 12: Generation Patterns
	Slide 13: Debugging Loop (execution‑guided)
	Slide 15: Evaluation & Benchmarks
	Slide 16: In‑Class Activity (10–15m)
	Slide 17: Reading — Lecture 1

