
Code Agents — Code
generation &

debugging

Learning Objectives

Define code agents
and contrast with
completion-only
tools

1

Diagram architecture
& trust boundaries
(ACI, tools, memory,
harness)

2

Design
retrieval/context
plans; budget tokens
effectively

3

Execute a closed-
loop debugging cycle;
capture artifacts

4

Interpret benchmark
results; pick
meaningful metrics

5

WHAT IS A CODE
AGENT?

Definition & Scope

Not just code completion; **closed loop** with execution
feedback

Autonomous system that plans, edits, runs, and evaluates
code changes

Inputs: issue/ticket, repo files, docs;
Outputs: diffs/PRs & test results

Environment: editor + shell + test harness
+ Version Control System/Continuous

Integration via Agent Computer Interface

Why “closed loop”
is essential

Closed loop: the
agent doesn’t just
generate code and
stop, it

➢ runs the
code/tests,

➢ observes
results,

➢ and edits again
until acceptance
criteria are met

1. Grounding in reality: Execution results (pass/fail, stack traces)

cut through hallucinations and guesswork.

2. Objective success signal: Continuous Integration/test

outcomes define “done,” not the agent’s confidence.

3. Smaller, safer diffs: Iteration encourages minimal patches with

clear effects.

4. Better debugging: Failures become data the agent can use to

localize bugs.

5. Reproducibility & auditability: Each cycle leaves artifacts

(diffs, logs, CI runs).

6. Safety hooks: The loop runs inside a sandbox with gates

(coverage, SAST, secret scans), so risky edits get blocked early.

Benefits of “closed loop”

Mental model (pseudocode)

while not acceptance_criteria_met:
 plan = analyze(issue, context)
 patch = propose_minimal_diff(plan)
 apply(patch)
 results = run_harness() # tests, lint, build, coverage
 if results.green:
 open_or_update_PR(patch, results)
 break
 else:
 diagnose(results) # read failing tests/tracebacks
 refine_plan()

Context Strategies for Large Repos

• Embed & retrieve: files, symbols, docs, issues
(rank by task relevance)

• Static signals: call graph, imports, types,
ownership metadata

• Budget: prioritize high-signal snippets;
iterative retrieval

• Determinism: cache retrieval results for
reproducible runs

Generation Patterns

• Spec-first: restate requirements; define
acceptance tests

• Scaffold-first: create stubs/interfaces; fill
post-tests

• Diff-first: **unified patches** to minimize
churn

• Decompose: small, verifiable steps vs.
monolithic changes

Debugging Loop (execution-guided)

• Run tests/build; capture errors, logs, coverage

• Localize fault (binary search, delta debugging)

• Hypothesize cause; **minimal fix**;
regenerate

• Selective re-runs; stop criteria: tests pass +
coverage ≥ baseline

Evaluation & Benchmarks

• SWE-bench & SWE-bench Verified: real
issues/PRs in multi-file repos

• SWE-agent ACI improves agent performance
on SWE-bench (reported 12.5% pass@1)

• DebugBench/DebugEval: bug
localization/repair tasks

• Metrics: build-green rate, time-to-green, diff
churn, coverage Δ, flake rate

In-Class Activity (10–15m)
Artifact What to produce

Plan Subgoals + acceptance tests

Retrieval set Top files/symbols to inspect (with
rationale)

Patch outline 1–3 edits with expected test impact

Risks 2 risks + quick mitigations

Reading — Lecture 1

• SWE-bench (arXiv 2310.06770); SWE-bench
Verified (OpenAI, 2024/25)

• SWE-agent (arXiv 2405.15793; NeurIPS’24)

• OpenHands (arXiv 2407.16741; OpenReview)

• AutoCodeRover (arXiv 2404.05427)

• Self-Debug (ICLR’24); Reflexion (NeurIPS’23)

• DebugBench/DebugEval (2024–25)

https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2407.16741
https://arxiv.org/abs/2407.16741
https://arxiv.org/abs/2404.05427
https://arxiv.org/abs/2404.05427
https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2401.04621
https://arxiv.org/abs/2401.04621
https://arxiv.org/abs/2408.05006

	Slide 1: Code Agents — Code generation & debugging
	Slide 2: Learning Objectives
	Slide 3: What is a Code Agent?
	Slide 4: Definition & Scope
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Mental model (pseudocode)
	Slide 9
	Slide 11: Context Strategies for Large Repos
	Slide 12: Generation Patterns
	Slide 13: Debugging Loop (execution‑guided)
	Slide 15: Evaluation & Benchmarks
	Slide 16: In‑Class Activity (10–15m)
	Slide 17: Reading — Lecture 1

