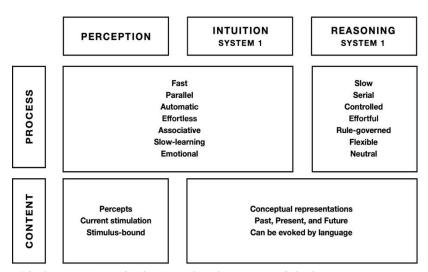
Agent Foundations

Reasoning, Memory, and Planning

Key Concepts for (Language) Agents

- ☐ Reasoning
- □ Memory
- Planning

Key Concepts for Language Agents


- □ Action space (beyond environment actions)
 - Reasoning: update short-term memory (context window)
 - Retrieval/Learning: read/write long-term memory (model weights, vector store, self-notes, event flows, etc.)
- ☐ **Planning**: (inference-time) algorithm to choose an action from the action space

THINK

— Thomas J. Watson

• For humans: various mental processes

*(Kahneman, 2003), also note that this notion of dual process is put in question. See, e.g., Mercier and Sperber (2017)

- For humans: various mental processes
- For LMs: intermediate generation

Math Word Problems (free response)

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Math Word Problems (multiple choice)

Q: How many keystrokes are needed to type the numbers from 1 to 500? Answer Choices: (a) 1156 (b) 1392 (c) 1480 (d) 1562 (e) 1788

A: There are 9 one-digit numbers from 1 to 9. There are 90 two-digit numbers from 10 to 99. There are 401 three-digit numbers from 100 to 500. 9 + 90(2) + 401(3) = 1392. The answer is (b).

StrategyQA

Q: Yes or no: Would a pear sink in water?

A: The density of a pear is about 0.6 g/cm³, which is less than water. Thus, a pear would float. So the answer is no.

Date Understanding

Q: The concert was scheduled to be on 06/01/1943, but was delayed by one day to today. What is the date 10 days ago in MM/DD/YYYY?

A: One day after 06/01/1943 is 06/02/1943, so today is 06/02/1943. 10 days before today is 05/23/1943. So the answer is 05/23/1943.

*(Wei et al., 2022), also see (Ling et al., 2017; Cobbe et al., 2021; Nye et al., 2021)

- For humans: various mental processes
- For LMs: intermediate generation
 - Imitate various (but not all) human mental processes

Math Word Problems (free response)

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Math Word Problems (multiple choice)

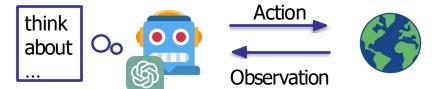
Q: How many keystrokes are needed to type the numbers from 1 to 500? Answer Choices: (a) 1156 (b) 1392 (c) 1480 (d) 1562 (e) 1788

A: There are 9 one-digit numbers from 1 to 9. There are 90 two-digit numbers from 10 to 99. There are 401 three-digit numbers from 100 to 500. 9 + 90(2) + 401(3) = 1392. The answer is (b).

StrategyQA

Q: Yes or no: Would a pear sink in water?

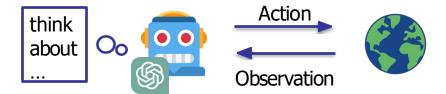
A: The density of a pear is about 0.6 g/cm^3, which is less than water.
Thus, a pear would float. So the answer is no.


Date Understanding

Q: The concert was scheduled to be on 06/01/1943, but was delayed by one day to today. What is the date 10 days ago in MM/DD/YYYY?

A: One day after 06/01/1943 is 06/02/1943, so today is 06/02/1943. 10 days before today is 05/23/1943. So the answer is 05/23/1943.

*(Wei et al., 2022), also see (Ling et al., 2017; Cobbe et al., 2021; Nye et al., 2021)


- For humans: various mental processes
- For LMs: intermediate generation
- For agents: internal actions

- For humans: various mental processes
- For LMs: intermediate generation
- For agents: internal actions
 - Why is it helpful?
 - Why is it special?
 - Owner or with the owner of the owner of the owner of the owner of the owner owner

- For humans: various mental processes
- For LMs: intermediate generation
- For agents: internal actions
 - Why is it helpful?
 - Why is it special?
 - Owner or with the control of the

Why is reasoning helpful for agents?

Act

t+1

Open cabinet

Obs t You are cooking a dish and seeing salt is out... Act "The dish should be savory, and since salt is out, I should find the soy sauce instead. It is in the cabinet Reasoning to my right..." Obs Act t Turn right Reason to act Obs You see a cabinet and a table... 1. Generalization t+1

Observation to Action mapping could be hard

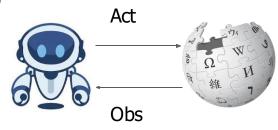
Alignment

Conversely, acting also helpful for reasoning

SH

who is PM of UK?

As of December 2022, the Prime Minister of the United Kingdom is Boris Johnson.


However, since I am a large language model trained by OpenAI, my knowledge is limited to what was available at the time of my training in 2021. My ability to provide current information is limited, and I am not able to browse the internet for up-to-date information.

Act to reason

- 1. Obtain knowledge
- 2. Update knowledge

Hallucination due to limited / outdated knowledge

ReAct (Yao et al., 2022)

ReAct prompt

Question Which magazine was started first Arthur's Magazine or First for Women?

Thought 1 I need to search Arthur's Magazine and First for Women, and find which was started first.

Action 1 Search[Arthur's Magazine]

Observation 1 Arthur's Magazine (1844-1846) was an American literary periodical published in Philadelphia ... **Thought 2** Arthur's Magazine was started in 1844. I need to search First for Women next.

Action 2 Search[First for Women]

Observation 2 First for Women is a woman's magazine published by Bauer Media Group ... was started in 1989... **Thought 3** First for Women was started in 1989. 1844 (Arthur's Magazine) < 1989 (First for Women), so Arthur's Magazine was started first.

Action 3 Finish[Arthur's Magazine]

Reason-only prompt

(Chain-of-thought, CoT)

Question Which magazine was started first Arthur's Magazine or First for Women? Thought Arthur's Magazine was started in 1844. First for Women was started in 1989. 1844 (Arthur's Magazine) < 1989 (First for Women), so Arthur's Magazine was started first. Answer Arthur's Magazine

Act-only prompt

(similar to WebGPT)

Question Which magazine was started first Arthur's Magazine or First for Women?

Action 1 Search[Arthur's Magazine]

Observation 1 Arthur's Magazine (1844-1846) was an American literary periodical published in Philadelphia ...

Action 2 Search[First for Women]

Observation 2 First for Women is a woman's magazine published by Bauer Media Group ... was started in 1989... Action 3 Finish[Arthur's Magazine]

Standard prompt

Question Which magazine was started first Arthur's Magazine or First for Women? **Answer** Arthur's Magazine

Reasoning without acting

Question: Aside from the Apple Remote, what other device can control the program Apple Remote was originally designed to interact with?

Standard

Answer: iPod

Reason Only

Thought: Let's think step by Apple Remote was originally designed interact with Apple TV. Apple TV can be controlled by iPhone, iPad, and Touch. So the answer is iPhone, iPad, and iPod Touch.

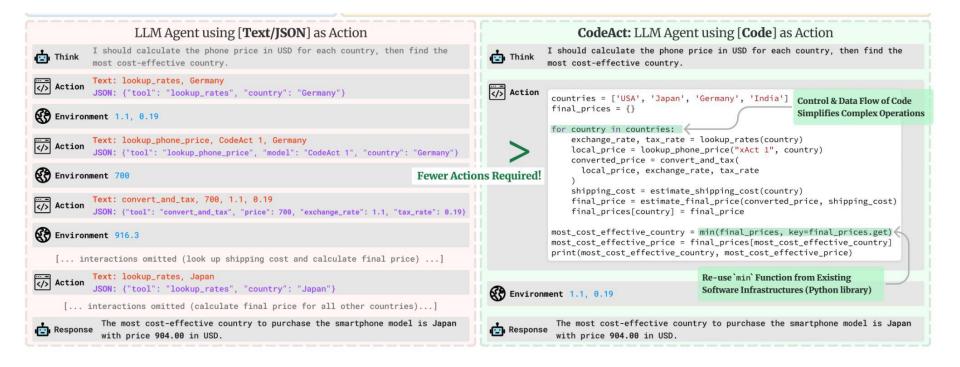
Answer: iPhone, iPad, iPod Touch

Reasoning with acting

Act 4: Finish[keyboard function keys]

Question: Aside from the Apple Remote, what other device can control the program Apple Remote was originally designed to interact with?

ReAct (Reason + Act)


Thought 1: I need to search Apple Remote and find the program it was originally designed to interact with. Act 1: Search[Apple Remote] Obs 1: The Apple Remote is a remote control introduced in October 2005 by Apple ... originally designed to control the Front Row media center program(long text omitted) Thought 2: Apple Remote was originally designed to control the Front Row media center program. I need to search Front Row next and find what other device can control it. Act 2: Search[Front Row] Obs 2: Could not find [Front Row]. Similar: ['Front Row Seat to Earth', 'Front Row Motorsports', 'Front Row (software)', ...] Thought 3: Front Row is not found. I need to searchFront Row (software). Act 3: Search[Front Row (software)] Obs 3: Front Row is a discontinued media center software (...long text omitted) Thought 4: Front Row (software) is controlled by an Apple Remote or the keyboard function keysS.o the answer is keyboard function

Acting without reasoning

Question: Aside from the Apple Remote, what other device can control the program Apple Remote was originally designed to interact with?

Act 1: Search[Apple Remote] Obs 1: The Apple Remote is a remote control introduced in October 2005 by Apple ... originally designed to control the Front Row media center program ... Act 2: Search[Front Row] Obs 2: Could not find [Front Row]. Similar: ['Front Row Seat to Earth', 'Front Row Motorsports', 'Front Row (software)', ...] Act 3: Search[Front Row (software)] Obs 3: Front Row is a discontinued media center software ... X Act 4: Finish[yes]

The flexibility of "acting"

The flexibility of "acting"

from chemcrow.agents import ChemTools, ChemCrow
chemtools = ChemTools()

Initialize ChemCrow object with toolset and LLM
crow = ChemCrow(
 chemtools.all_tools,
 model="gpt-4",
 temp=0.1,
)

Task definition
task = (
 "Find and synthesize a thiourea organocatalyst "
 "which accelerates a Diels-Alder reaction."
)

Execute ChemCrow
crow.run(task)

b Task: Find and synthesize a thiourea organocatalyst which accelerates a Diels-Alder reaction.

First, I need to find a thiourea organocatalyst that can accelerate the Diels-Alder reaction. I will perform a web search to find a suitable catalyst.

Web Search tool: Schreiner's thiourea catalyst

Now, I will obtain the SMILES. Name2Smiles tool: FC(F)(F)c1cc(NC(=S)Nc2cc(C(F)(F)F)cc(C(F)(F)F)c2)cc(C(F)(F)F)c1

I will plan a synthesis for Schreiner's thiourea catalyst. **SynthesisPlanner tool:** Detailed synthesis plan

I will execute the synthesis.

SynthesisExecuter tool: Successful synthesis.

RoboRXN synthesis platform

d Chemcrow workflows with experimental validation

Insect repellent (plan and execute)

Thiourea organocatalysts (plan and execute)

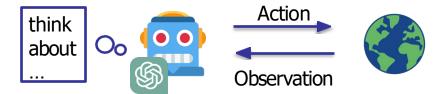
Ricci's catalyst

Takemoto's catalyst

Novel chromophore (clean data, train model, and predict)

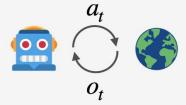
Connection with physical world

Synthesis step 1: Bromo Suzuki coupling


Synthesis step 2: Iodo Heck reaction

The flexibility of "reasoning"

Reflection: The edit to increase learning rate to 0.3 in train Ir03.py is correct. Research Plan and Status: 1. Understand the train.py script and dataset Fact Check: Edit to train Ir03.py is confirmed correct. Thought: Next I will execute the edited train Ir03.py script Action: Execute Script Action Input: { "script_name": "train_lr03.py"}.


Р3 I wish I could explore the universe with you, like my ancestors did Esca Observe: Esca senses the warmth and eager desire of humans to explore the universe. Reflect: Esca displays a kind of contempt and disdain. believing that human understanding of the higherdimensional world is too superficial. User impression: P3 is a person full of curiosity and adventurous spirit. Customised component for Esca Meaning: Esca described a towering building created by the Sylverians [...] Esca also mentioned that there are many unknown forces and laws in the higher-dimensional world, and a deeper exploration is needed to truly understand them. Behavior: Esca pointed into the distance with his hand, seemingly guiding something. Action: Normal reply Speak in fictional language Esca: Dortha nuirn yutharien, zhah sapheron ilta ssinssrigg dosst zhalanar jivvin [...]

- For humans: various mental processes
- For LMs: intermediate generation
- For agents: internal actions
 - Why is it helpful?
 - Why is it special?
 - Owner or with the control of the

Why is reasoning special for agents?

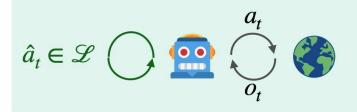
Traditional agents: action space A defined by the environment



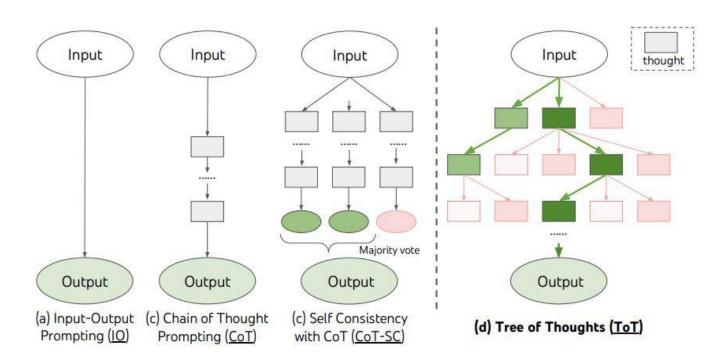
- External feedback o_t
- Agent context $c_t = (o_1, a_1, o_2, a_2, \dots, o_t)$
- Agent action $a_t \sim \pi(a \mid c_t) \in A$

ReAct: action space $\hat{A} = A \cup \mathcal{L}$ augmented by reasoning

- $\hat{a}_t \in \mathcal{L}$ can be any language sequence
- Agent context $c_{t+1} = (c_t, \hat{a}_t, a_t, o_{t+1})$
- $\hat{a}_t \in \mathcal{L}$ only updates **internal context**

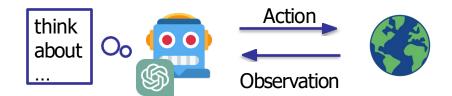

- For humans: various mental processes
- For LMs: intermediate generation
- For agents: internal actions
 - Why is it helpful?
 - Why is it special?
 - Owner or the companies of the compani

Why is reasoning just now for agents?


- Bigger action space -> More capacity, harder decision making
 - The space of reasoning/language is infinite
- LLMs learn reasoning priors by imitating various human reasoning traces

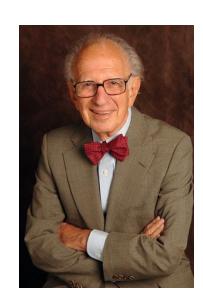
ReAct: action space $\hat{A} = A \cup \mathcal{L}$ augmented by reasoning

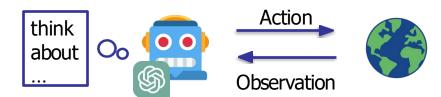
- $\hat{a}_t \in \mathcal{L}$ can be any language sequence
- Agent context $c_{t+1} = (c_t, \hat{a}_t, a_t, o_{t+1})$
- $\hat{a}_t \in \mathcal{L}$ only updates **internal context**


Action planning (e.g. tree search) to improve reasoning

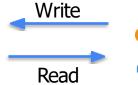
Tree of Thoughts, 2023

Reasoning: Takeaways

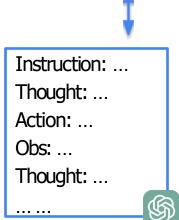

- Reasoning as internal actions for agents
 - No external feedback, just change internal context
 - Infinite space -> requires strong priors to navigate
- Reasoning guides acting, acting updates reasoning
- Action planning approaches (e.g. tree search) can improve reasoning

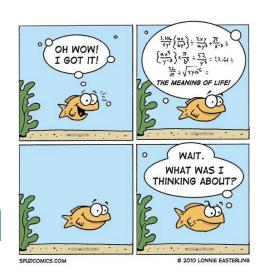


Memory


Memory is everything. Without it we are nothing.

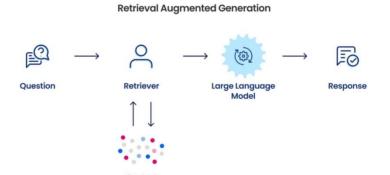
— Eric Kandel





A long-term memory

- Read and write
- Stores experience, knowledge, skills, ...
- Persist over new experience



THE TRAGEDY OF A THREE SECOND MEMORY

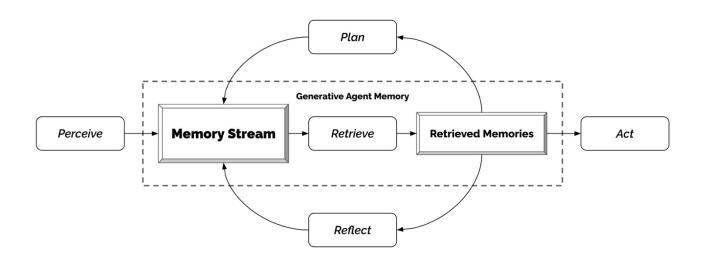
What about retrieval and RAG?

- We can think of the retrieval corpus as "read-only" LTM
 - Written by others (e.g., Wikipedia editors), not the agent itself
 - Retrieve[query]: a read action
- Limitations
 - Can only live "others' experience", which might not be optimal for the agent
 - The way corpus is written might not be optimal for agent usage
- Agent memory: also be able to autonomously write to it!

Long-term memory: Content

Type by content	Definition	Examples
Episodic memory	Stores experience	Generative agents [Park et al., 2023]
Semantic memory	Stores knowledge	
Procedural memory	Stores skills	Voyager [Wang et al., 2023]

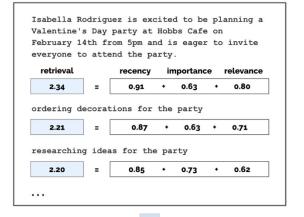
- Note: here we categorize based on memory content, which is
 - Inspired by <u>human long-term memory systems</u>
 - orthogonal to implementations


Generative agents

Morning routine

Generative agents

- The need for memory
 - Context window cannot possibly hold all the event streams
 - Even if possible, might be hard to attend to relevant events, or digest over them

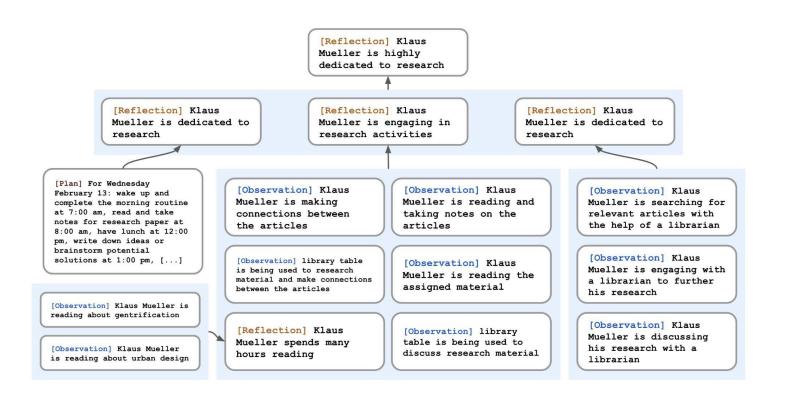


Episodic memory

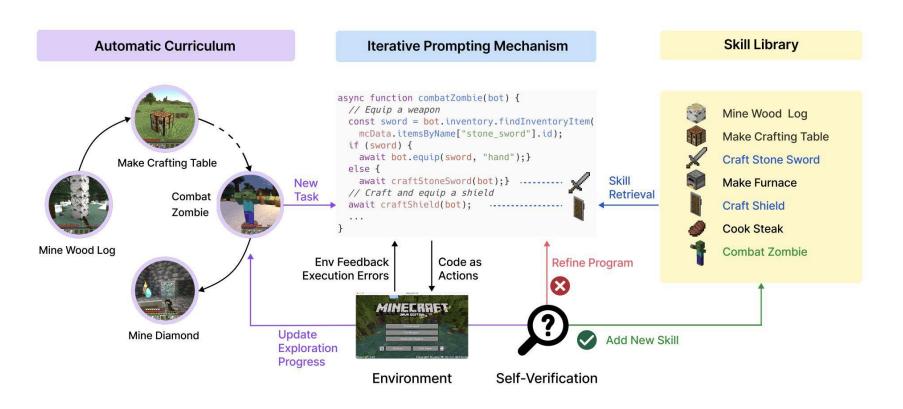
- Write: append-only event streams
- Read: retrieval based on heuristic scores

Memory Stream 2023-02-13 22:48:20: desk is idle 2023-02-13 22:48:20: bed is idle 2023-02-13 22:48:10: closet is idle 2023-02-13 22:48:10: refrigerator is idle 2023-02-13 22:48:10: Isabella Rodriguez is stretching 2023-02-13 22:33:30: shelf is idle 2023-02-13 22:33:30: desk is neat and organized 2023-02-13 22:33:10: Isabella Rodriguez is writing in her journal 2023-02-13 22:18:10: desk is idle 2023-02-13 22:18:10: Isabella Rodriguez is taking a break 2023-02-13 21:49:00: bed is idle 2023-02-13 21:48:50: Isabella Rodriguez is cleaning up the 2023-02-13 21:48:50: refrigerator is idle 2023-02-13 21:48:50: bed is being used 2023-02-13 21:48:10: shelf is idle 2023-02-13 21:48:10: Isabella Rodriguez is watching a movie 2023-02-13 21:19:10: shelf is organized and tidy 2023-02-13 21:18:10: desk is idle 2023-02-13 21:18:10: Isabella Rodriguez is reading a book 2023-02-13 21:03:40: bed is idle 2023-02-13 21:03:30: refrigerator is idle 2023-02-13 21:03:30: desk is in use with a laptop and some papers on it . . .

Q. What are you looking forward to the most right now?



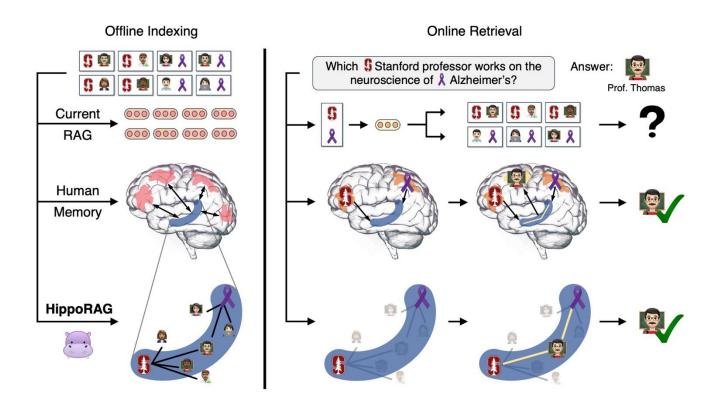
I'm looking forward to the Valentine's Day party that I'm planning at Hobbs Cafe!


Semantic memory

- Write: LLM reasoning over events
- Read: retrieval

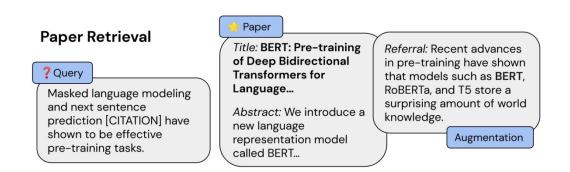
Voyager: Procedural memory

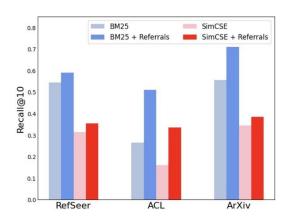
- Write: Code-based skills
- Read: Embedding retrieval



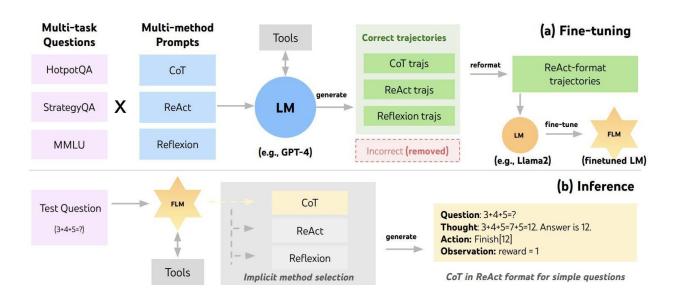
Long-term memory: Implementation

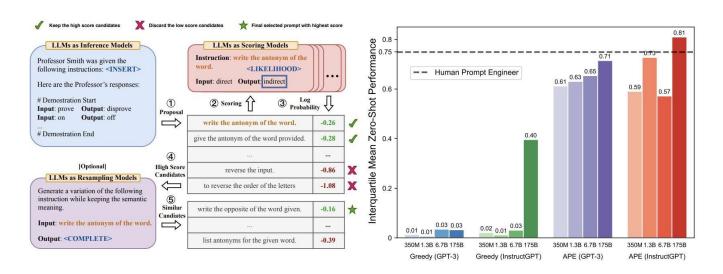
- The "naive" implementation
 - Read: off-the-shelf retriever, e.g. BM25, neural embeddings
 - Write: append to some text corpus


- Some interesting new implementations for agent memory
 - Read: online retrieval by traversal
 - Write: index augmentation with reasoning/referral

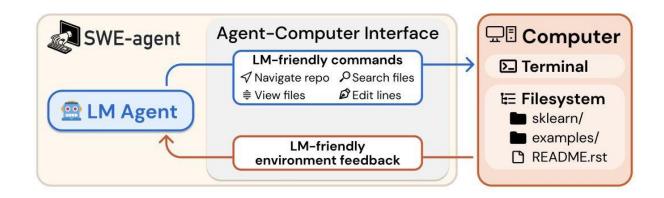

HippoRAG

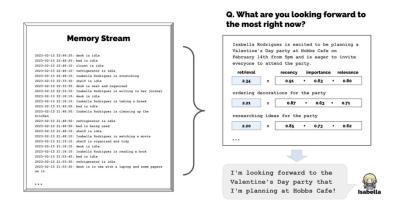
Gutiérrez et al. "HippoRAG: Neurobiologically Inspired Long-Term Memory for Large Language Models." NeurIPS (2024)

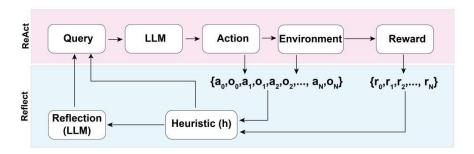

Referral augmentation



- Reasoning can be used to augment what's written to memory
- More efforts spent into writing, less spend into reading


Fine-tuning model weights (the most obvious)


- Fine-tuning model weights (the most obvious)
- Optimizing prompts across tasks


- Fine-tuning model weights (the most obvious)
- Optimizing prompts across tasks
- Improve the agent's own codebase

- Fine-tuning model weights (the most obvious)
- Optimizing prompts across tasks
- Improve the agent's own codebase
- Write down examples/events to retrieve later

- Fine-tuning model weights (the most obvious)
- Optimizing prompts across tasks
- Improve the agent's own codebase
- Write down examples/events to retrieve later
- Append self-reflection to prompt to try again

- Fine-tuning model weights (the most obvious)
- Optimizing prompts across tasks
- Improve the agent's own codebase
- Write down examples/events to re
- Append self-reflection to prompt t
- Combine multiple approaches!

Fine-Tuning and Prompt Optimization:

Two Great Steps that Work Better Together

Dilara Soylu Christopher Potts Omar Khattab

Stanford University

Algorithm 1 BetterTogether: Optimizing LM programs by alternating prompt and weight optimization steps, instantiated in Algorithm 2

```
Input: Program \Phi_{\langle\Theta,\Pi\rangle} = \Phi_{\Theta} \odot \Phi_{\Pi}, with module weights \Theta = [\theta_1, \dots, \theta_{|\Phi|}] and module prompts \Pi = [\pi_1, \dots, \pi_{|\Phi|}]

Training Set X and Metric \mu

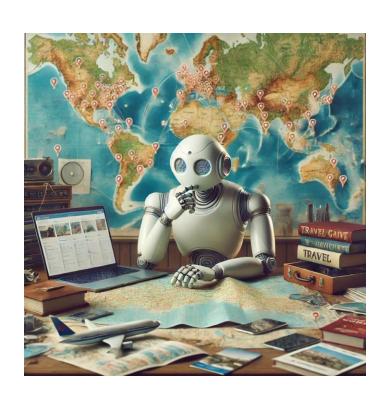
1: function BetterTogether(\Phi_{\langle\Theta,\Pi\rangle}, X, \mu)

2: \Pi' \leftarrow \text{OptimizePrompts}(\Phi_{\langle\Theta,\Pi\rangle}, X, \mu)

3: \Theta' \leftarrow \text{FinetuneWeights}(\Phi_{\langle\Theta,\Pi'\rangle}, X, \mu)

4: \Pi'' \leftarrow \text{OptimizePrompts}(\Phi_{\langle\Theta',\Pi'\rangle}, X, \mu)

5: return \Phi_{\langle\Theta',\Pi''\rangle}
```

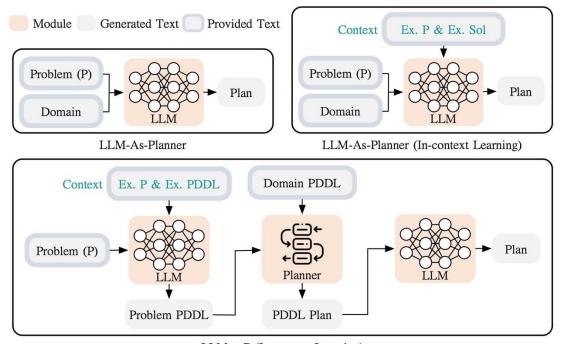

6: end function

Memory: Takeaways

- Language agents interact with external environments and internal memories (information-storing devices)
 - Interact with short-term memory (context window): reasoning
 - Interact with long-term memory (LLM weights, event logs, codebase, prompt library, etc.): retrieving and **learning**
- Exercise question: what's the difference between external environment vs internal memory then? (Hint: check CoALA)

Planning

Planning: (simplified) definition


Given a goal G, decides on a sequence of actions $(a_0, a_1, ..., a_n)$ that will lead to a state that passes the goal test $g(\cdot)$

General trends in planning settings for language agents

- Increasing expressiveness in goal specification, e.g., in natural language as opposed to formal language
- Substantially expanded or open-ended action space
- Increasing difficulty in automated goal test

LLM+P

When domain and problem can be (fully or partially) described formally, e.g., in PDDL (Planning Domain Definition Language)

LLM + P (In-context Learning)

An Example PDDL Problem File Written by GPT-4 with Context

Context (shaded):

An example planning problem is: You have 5 blocks. b2 is on top of b5. b5 is on top of b1. b1 is on top of b4. b3 is on top of b2. b4 is on the table. b3 is clear. Your arm is empty. Your goal is to move the blocks. b4 should be on top of b3. The problem PDDL is: (:objects b1 b2 b3 b4 b5) (:init (arm-empty) (on b1 b4) (on b2 b5) (on b3 b2) (on-table b4) (on b5 b1) (clear b3)) (:goal (and (on b4 b3))))

Prompt: Description of Problem (P1) + Context + Provide me with the problem PDDL file that describes the planning problem directly without further explanations.

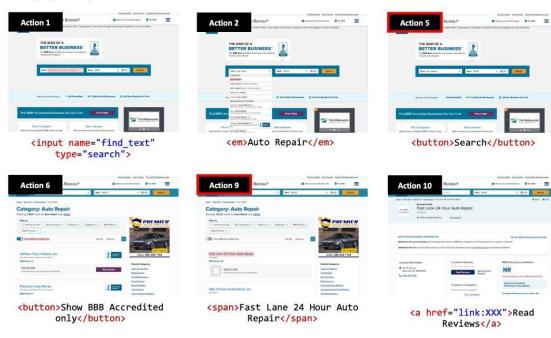
GPT-4 (the generated problem PDDL):

Planner:

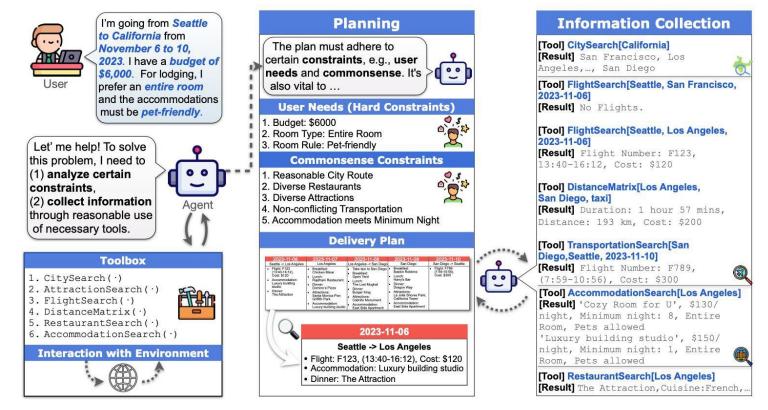
```
(unstack b5 b3) (putdown b5)
(unstack b3 b4) (stack b3 b5)
(unstack b4 b2) (putdown b4)
(unstack b2 b1) (putdown b2)
(pickup b1) (stack b1 b2) (pickup b4) (stack b4 b1)
```

Liu et al., "LLM+P: Empowering Large Language Models with Optimal Planning Proficiency." arXiv preprint 2304.11477 (2023)
See also Kambhampati et al., "LLMs Can't Plan, But Can Help Planning in LLM-Modulo Frameworks." arXiv preprint 2402.01817 (2024)

Language agent planning: web agents

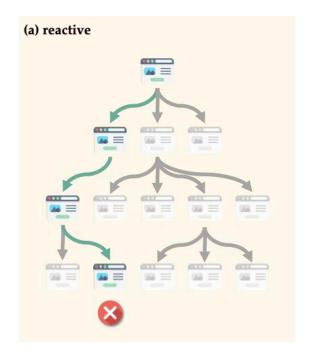

Task Description:

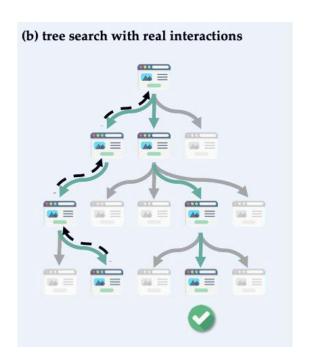
Show me the reviews for the auto repair business closest to 10002.

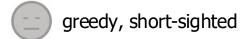

Action Sequence:

	Target Element	Operation
1.	[searchbox] Find	TYPE: auto repair
2.	[button] Auto Repair	CLICK
3.	[textbox] Near	TYPE: 10002
4.	[button] 10002	CLICK
5.	[button] Search	CLICK
6.	[switch] Show BBB Accredited only	CLICK
7.	[svg]	CLICK
8.	[button] Sort By	CLICK
9.	[link] Fast Lane 24 Hour Auto Repair	CLICK
10.	[link] Read Reviews	CLICK

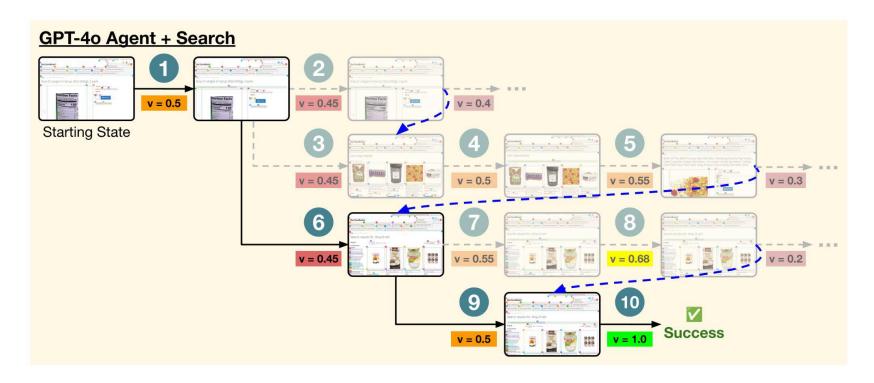
Webpage Snapshots:




Language agent planning: travel planning

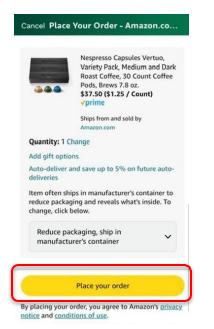

Xie et al., "TravelPlanner: A Benchmark for Real-World Planning with Language Agents." ICML (2024)

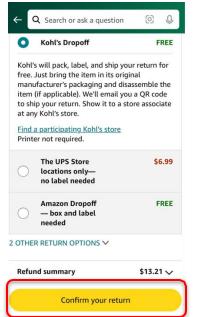
Planning paradigms for language agents

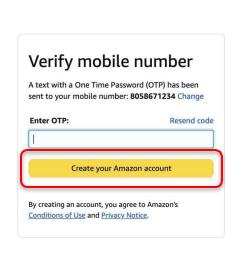


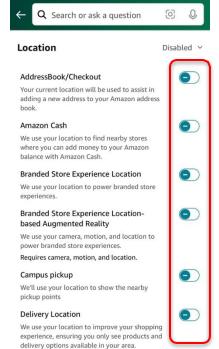
fast, easy to implement

Tree search with real interactions

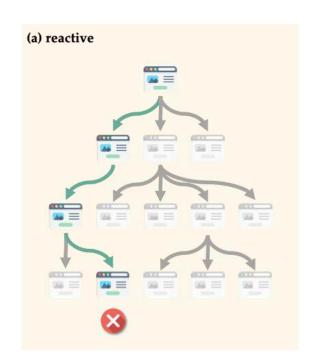

Jing Yu Koh, Stephen McAleer, Daniel Fried, Ruslan Salakhutdinov. "Tree Search for Language Model Agents." arXiv preprint arXiv:2407.01476 (2024). Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, Yu-Xiong Wang. "Language Agent Tree Search Unifies Reasoning Acting and Planning in Language Models." ICML (2024).

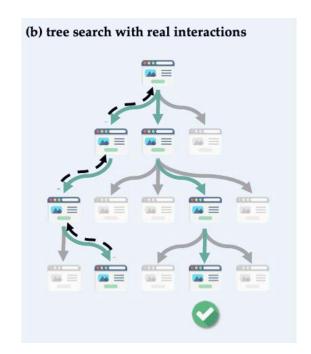

Challenges with tree search in the real world

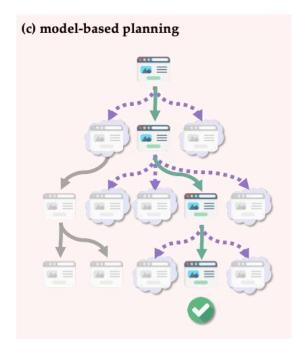

Many actions are state-changing and irreversible → backtracking X

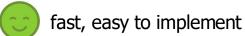


- Safety/privacy risks
- Inference-time exploration could be slow and costly

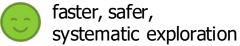








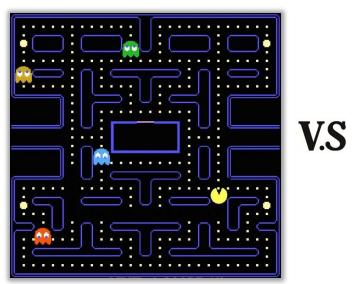
Planning paradigms for language agents



greedy,short-sighted

irreversible actions, unsafe, slow

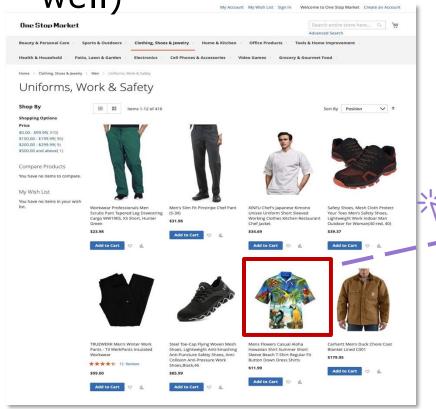
how to get a world model?

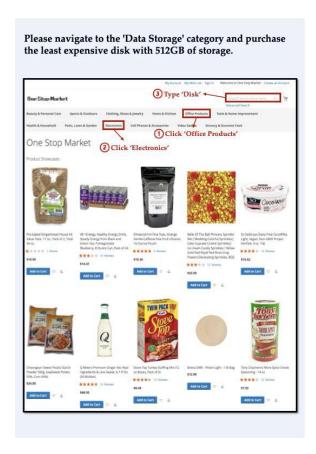

What's ... a world model?

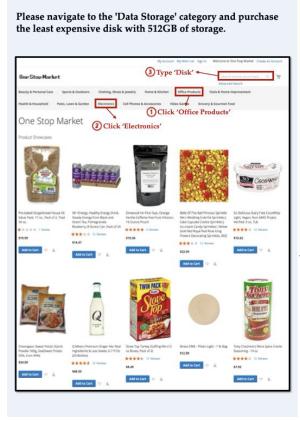

A computational model of environment transition dynamics

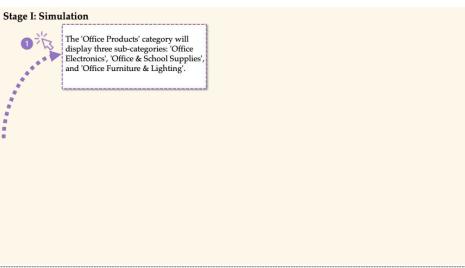
$$\widehat{T}: \mathcal{S} \times \mathcal{A} \to \mathcal{S}$$

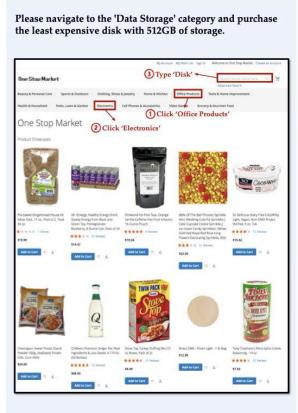
If I do this (a_t) right now (s_t) , what would happen next (s_{t+1}) ?

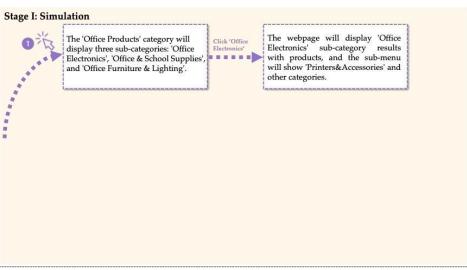

Why hasn't it been done yet?

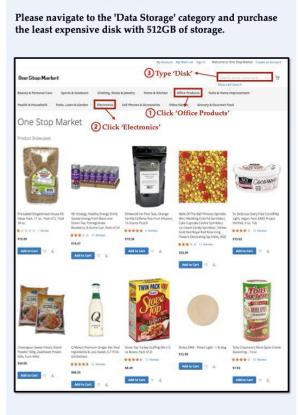


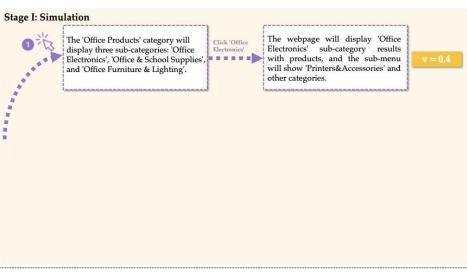

And **billions of other websites** on the Internet!

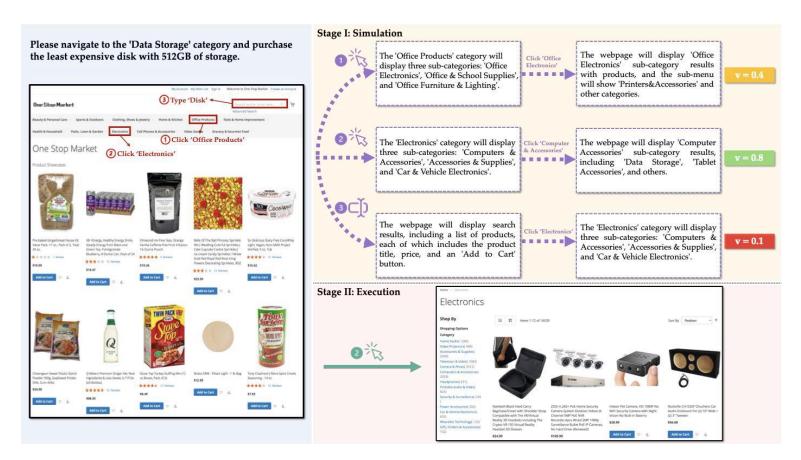

LLMs can predict state transitions (reasonably well)

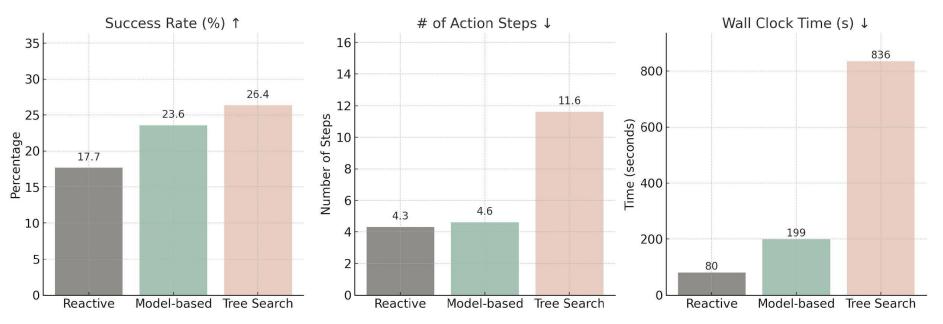


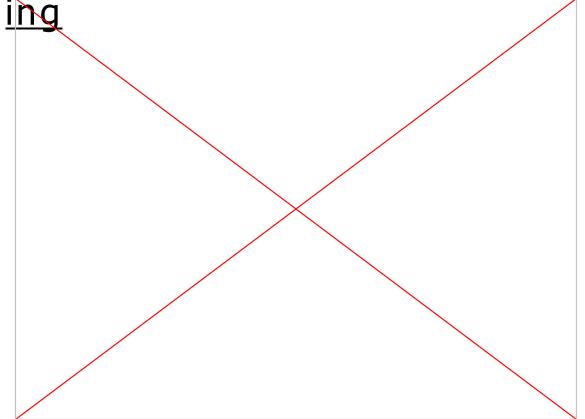

The page will navigate to a detailed product page for the "Mens Flowers Casual Aloha Hawaiian Shirt Summer Short Sleeve Beach T-Shirt Regular Fit Button Down Dress Shirts." This new page will likely contain additional information about the product including more detailed specifications, customer reviews, larger images, sizing options, and possibly a larger "Add to Cart" button. Other elements from the current category view like the grid of products will be replaced with the detailed view of this specific product.







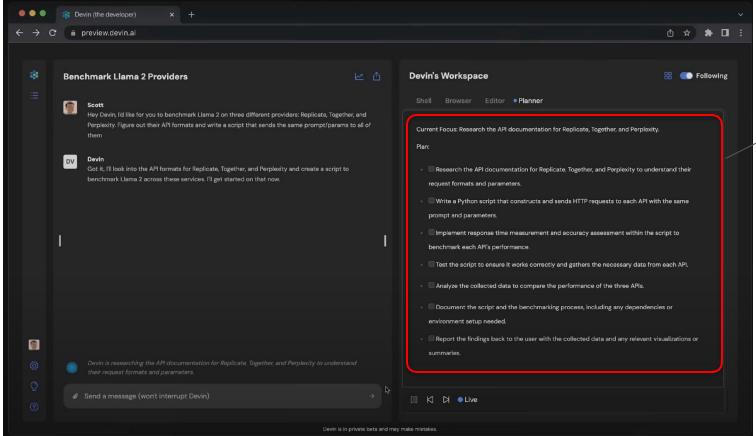



Results on VisualWebArena

Model-based planning is more accurate than reactive planning and more efficient than tree search (also recall the challenges of tree search in real-world environments)

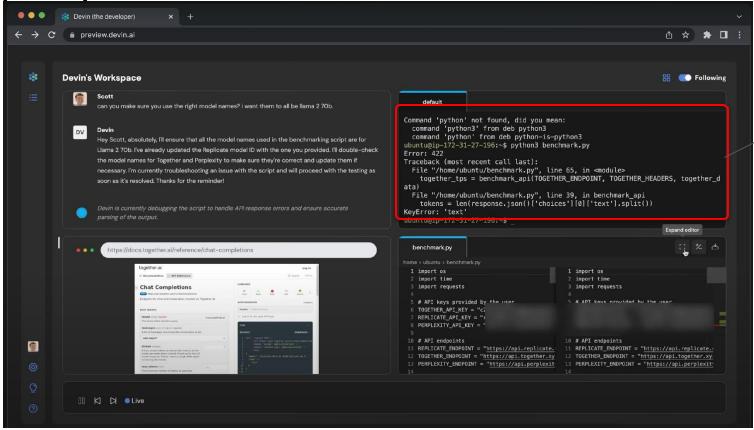
Reactive and tree search results are from Koh et al., (2024)

Hierarchical planning and dynamic replanning


Song et al., "LLM-Planner: Few-Shot Grounded Planning for Embodied Agents with Large Language Models." ICCV (2023)

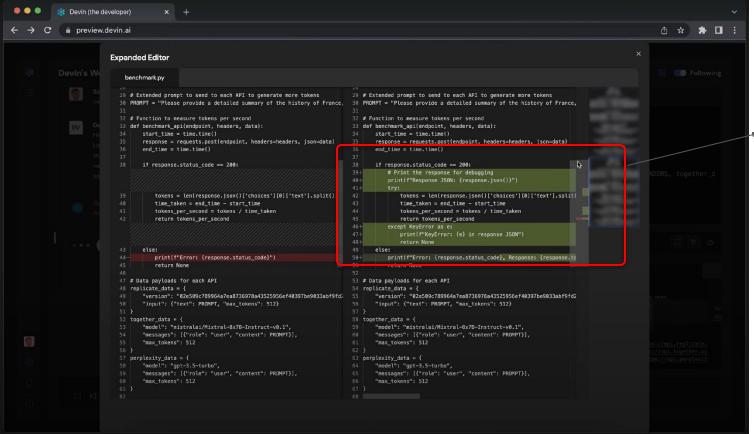
High-level

Plan


Hierarchical planning and dynamic

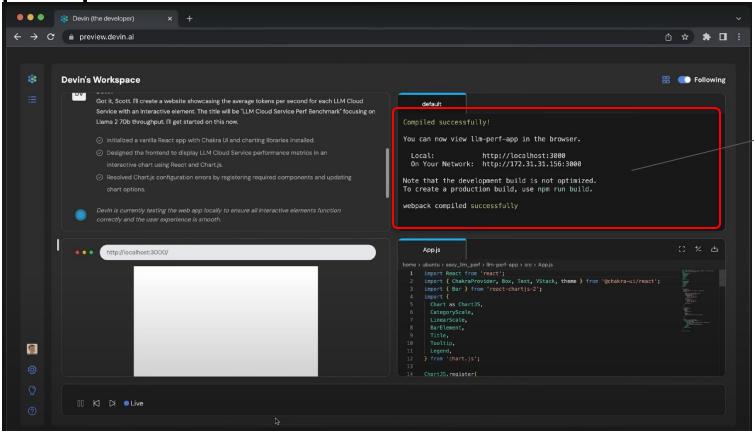
rep

Hierarchical planning and dynamic


rep

Ran into exception when carrying out a subgoal

Hierarchical planning and dynamic


rep

Re-plan
and add
print()
around the
exception
to get
debug info

Hierarchical planning and dynamic

rep

Solved the exception based on the printed out debug info!

Planning: Takeaways

- Language agents are expanding into new planning scenarios
 - characterized by expressive but fuzzy goal specifications, open-ended action spaces, more difficult and sometimes non-binary goal tests
- Language for reasoning also enables new planning abilities
 - Generalist world models and model-based planning
 - Hierarchical planning and dynamic replanning
- The best planning strategy is dependent on the LLM; stronger LLMs may require less scaffolding (i.e., more 'reactive')
- How to improve planning in LLMs is still largely an open question