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Claims of the paper
o  What was built?

What's the big deal?
Controversy! Disputes! Conspiracies!
How does it work?

How do we train it?
o Pipeline
m Distillation!
o GRPO in depth

Cool experiments!
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Paper Claims

e Reinforcement Learning is Key for Reasoning - even without Supervised Fine
Tuning
e DeepSeek-R1-Zero: A groundbreaking model demonstrating pure RL-driven
reasoning
o This experiment proved the importance of RL for reasoning
e DeepSeek-R1: A state-of-the-art reasoning model
o Novel 4-Stage Training Pipeline for Reasoning LLMs
e Distilled DeepSeek-R1 Models: A suite of smaller, dense models that inherit the

reasoning capabilities through knowledge distillation
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OpenAl o1 $100 million +

OpenAl 03-mini $2?



A A AR R RN
CHEAP CHEAP CHEAP

Model Input Cost per 1M tokens
DeepSeek R1 $0.14
OpenAl GPT-40 $2.50
OpenAl o1 $15.00

OpenAl 03-mini $1.10

Output Cost per 1M tokens
$0.28
$10.00
$60.00
$4.40
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DeepSeek surpasses ChatGPT ﬁpp Store as
Chinese Al startup sends shockwaves through
tech stocks

flock to Chinese Al startup

By Reuters
January 27, 2025 1:44 PM PST - Updated 19 days ago

DeepSeek hit by cyberattac? users
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systems.



OpenAl Says DeepSeek May Have
Improperly Harvested Its Data

The San Francisco start-up claims that its Chinese rival may have
used data generated by OpenAl technologies to build new

systems.

Spilling the &

e Bulk Export of Responses: someone bulk-exported model responses
from OpenAlin late 2024. Unclear if this is linked to DeepSeek.

e Microsoft reportedly observed someone in China extracting large
volumes of data from the OpenAl API (against ToS)

° : There are instances where DeepSeek provides
responses that seem very similar to what ChatGPT would give, suggesting

they learned from OpenAl's model.
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Jiayi Pan @ @jiayi_pirate 4
We reproduced DeepSeek R1-Zero in the CountDown
game, and it just works

N LAMBERT
2025

Through RL, the 3B base LM develops self-verification
and search abilities all on its own

You can experience the Ahah moment yourself for < $30 TinvZ
Code: github.com/jiayi-Pan/TinyZer... InyZero




How do reasoning models work?

e Explicitly outputs its reasoning steps as it attempts to answer/solve their
query
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Isn’t this just Chain of Thought?

Key Elements of a CoT Prompt:

° ask for step-by-step reasoning
e Use phrases like "Let's think step by step" or "Break down the problem™
e Include placeholder steps (e.g., "First... Second...")

e Request verification of the answer to encourage critical thinking
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Yes

...and why?
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Isn’t this just Chain of Thought?

CoT Reasoning
_ Trained to produce multiple paths of reasoning,
Encourages the model through prompting to evaluating them, and selecting the most
generate a sequence of thoughts but might not promised one.

be refined, and might produce a bad chain of

reasoning.

Why is this different?
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Isn’t this just Chain of Thought?

CoT Reasoning

Is explicitly trained through reinforcement
A clever prompting technique to elicit reasoning learning to produce reasoning steps

steps from instruct capable language models

that aren’t trained to reason

Prompted to produce things that logical Trained to produce /ogical steps
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DeepSeek-R1-

e DeepSeek-V3- - a previously created MoE model made with SFT
e Initial test (hence ) to see if a reasoning LLM can be taught purely
through reinforcement learning (GRPO)
e Shows that the typical SFT-then-RL approach wasn’t needed

e Emergent reasoning behaviors:

o Self-Verification
o Reflection
o Longer Chain of Thoughts
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Question: If a > 1, then the sum of the real solutions of va — va+x = x is equal to

Response: <think>

To solve the equation ya — ya +x = x, let’s start by squaring both - - -

2
( a— \I'ﬂ-i'-x) :Xz = a-— \ra+x:x2.
Rearrange to isolate the inner square root term:
(a-x2P =a+x = @-2a?+(x*)? =a+x = ¥»*-2ax?—-x+(a?-a)=0
Wait, wait. Wait. That's an aha moment I can flag here.
Let’s reevaluate this step-by-step to identify if the correct sum can be - - -
We started with the equation:
ya—vya+x=x
First, let’s square both sides:
a—ua+x:x2:> a+x=a-x
Next, I could square both sides again, treating the equation: - - -

2
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Question: If a > 1, then the sum of the real solutions of va — va+x = x is equal to

Response: <think>
To solve the equation ya — ya +x = x, let’s start by squaring both - - -

2
( a—\u"a+x) ’ X = x°.

_Interrupts its chain ) »
Rearrange to 1= of thought lare Self-identifies

turning point in its
{ﬂ—122:ﬂ+xf a- — zax- + 1x2)? ap axZ—x+(at-a)=0

Wait, wait. Wait. That's an aha moment I can flag here.

Let’s reevaluate this step-by-step to identify if the correct sum can be - - -
We started with the equation:

Va-+a+x=x

First, let’s square both sides:

a—ﬂu‘m:xz — Va+x=a-x?

Next, I could square both sides again, treating the equation: - - -
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e Researchers designed a reward for encouraging reasoning

Focus What it measured

Accuracy Correctly providing answers in reasoning tasks

Format Using <think> and <answer> tags correctly
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What the heck is ?

e (roup Relative Policy Optimization - an evolution from PPO

Jerro(0) = E[q ~ P(Q), {0:}%, ~ mg,,(0lq)]

¢ mg(0i|q) me(0ilq)
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= |
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Proximal Policy Optimization is a technique published by OpenAl in 2017
o Probability distribution output (Often Gaussian for continuous, Categorical for discrete, etc)
m Mean (1) and standard deviation/variance (o or o, respectively) are the layer’s outputs

It is an - algorithm - the learns our policy 1, the Critic

learns how good chosen actions were (V)
Utilizes Advantage (A) to train the
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Critic Evaluation
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What is PPO?

Clipped objective function to avoid large policy changes in the actor

Qn(s,a) . _ Tolarlst)
V(S) ﬂﬁ'k(atlst)'\ Probability the

previous policy
would choose this
action.

A(s,a) =

loss = min(r,clamp(l —€,1 +€,7)) x A
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What the heck is ?

e (roup Relative Policy Optimization - an evolution from PPO

Jerro(0) = E[q ~ P(Q), {0:}%, ~ mg,,(0lq)]

G
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The math behind

Objective Function

(what we are optimizing)

Parameters

/ (weights)
Jarrol(0) = E [q ~ P(Q), {0: ?:1 ~ ?Teum(*}')]

/

. Exptla-ctatio_tn - An expectation is the average
aka average value over many iterations
over many samples or
repetitions.
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The math behind

Objective Function sample .. distribution

(what we are optimizing)
Parameters
/ (weights)
Jarro(l) = E{*}' ~ P(Q), {”i i=1 " ]
Expectation /
(aka average value over many iterations) set
(of G outputs)
This says:
Sample a query from a collection of prompts, a set of G outputs using the

, then take the average of its scores over many iterations to iteratively
improve our weights.
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Jorro(6) = E[q ~ P(Q), {Di}}il ~ 79,4 (0|q) ]
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The math behind
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The math behind

Take the average

(
| . 7o (0ilq) :
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Take the average
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The math behind

A . QW(S5 a')
Take the average (s,a) = 70
me 19:19) , clip mo(0:l4) (0ilg), 1 — €, 1 +€ | A; | —B Dxr(mo||mref)
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The math behind

TP mean({'rh ra,... ,'T*G})
Take the average  std({ry. 7o, ....1g))

G
]. Taplo;|q) l
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The math behind

T mean({ry.rs,...,ra})
Tak?/the average - std({ri.72,....r¢})
| imiu L , clip mo(0ilg) (0ilg), 1 — €, 1+ €| A; | =B DxL(ma||mres)
(]: i—1 U Trﬂmﬂ (U!|q)
Here, is looking at relative
improvement by comparing each Also, by not having to train a
response to the group’s average, critic model, we are more stable
driving model updates towards better and more efficient!

relative responses
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The math behind

Ty mean({ry,ra,...,ra})
Take the average  std({ry. 7o, ....1g))
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\ / How aggressive are our KL
updates? Forms a trust region

Probability ratio Divergence

KL Divergence (Kullback—Leibler), also
known as relative entropy, measures how
different two probability distributions are.
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The math behind

T mean({ry,ra,...,ra})
Take the average  std({ry. 7o, ....1g))
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T A ;| (] ma . ;|1
=1 ' . ' ] / \
How aggressive are our KL
updates? Forms a trust region

Divergence

Dxr(mo||mret) = — log — 1

KL divergence is seeing how different the
new policy is from the old policy - we are
penalizing large changes!



The math behind

r; — mean({'rh ra,... ,'T*G})

Tak?/the average std({r1,72,...,7¢})
1 o , (0 :
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(T - _l.l_l . _|f.1, -r'.' :' ’ .-_..'.l . =|'-i'l. |rj||I I
\ / How aggressive are our KL
. ) updates? Forms a trust region .
Probability ratio Divergence
This says:
Update its strategy based on ( )- However, it only makes small,

careful adjustments (trust region) by clipping the size of the update and discouraging big changes (KL divergence), then averages these
adjustments over multiple experiences to find the best overall improvement.
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o O O O

was poor, especially in its thinking
Lack of markdown formatting or structure in thinking tokens
Few steps noted
Jumps in logic
Redundant and unconventional text
m Not human friendly/aligned

responses/thinking
No RL penalty, so it mixed languages as long as accuracy improved

RL resulted in focusing on the reward, not a useful model
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Model AIME 2024 MATH-500 Diamond Bench CodeForces
pass@l cons@64 pass@]1 pass@] pass@] rating
OpenAl-ol-mini 63.6 80.0 90.0 60.0 53.8 1820
OpenAl-01-0912 74.4 83.3 94.8 77.3 63.4 1843
DeepSeek-R1-Zero  71.0 86.7 95.9 73.3 50.0 1444
2024

e 15 question 3-hour high school mathematics
exam

merican Invitational Mathematics e Problem-solving skills and mathematical
xamination by the Mathematical knowledge in:
Association of America (MAA) o Algebra

o Geometry

o Number theory

Combinatorics

O
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OpenAl-01-0912 74.4 83.3 94.8 77.3 63.4 1843
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MATH-500
MATH-500 is a comprehensive e Algebra
mathematics benchmark that consists of e Calculus
500 problems spanning various e Probability
mathematical topics, including: e Geometry
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Model AIME 2024 MATH-500 . = . “. "~ " CodeForces
pass@l cons@64 pass@]1 pass@] pass@] rating
OpenAl-o1-mini 63.6 80.0 90.0 60.0 53.8 1820
OpenAl-01-0912 74.4 83.3 94.8 77.3 63.4 1843
DeepSeek-R1-Zero  71.0 86.7 95.9 73.3 50.0 1444
GPQA Diamond e Biology
e Physics
Graduate-Level Google Proof Q&A e Chemistry
Benchmark e Diamond includes an
448 multiple-choice questions additional 198 PhD

covering: level science questions
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Model AIME 2024 MATH-500 Diamond Bench CodeForces
pass@l cons@64 pass@]1 pass@] pass@] rating
OpenAl-ol-mini 63.6 80.0 90.0 60.0 53.8 1820
OpenAl-01-0912 74.4 83.3 94.8 77.3 63.4 1843
DeepSeek-R1-Zero  71.0 86.7 95.9 73.3 50.0 1444

LiveCode Bench

e Diverse coding benchmark of 600+
high quality coding problems

e “Contamination Free” - problems
LLM’s been trained on nor
contains LLM generated solutions
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Model AIME 2024 MATH-500 Diamond Bench CodeForces
pass@l cons@64 pass@]1 pass@] pass@] rating
OpenAl-ol-mini 63.6 80.0 90.0 60.0 53.8 1820
OpenAl-01-0912 74.4 83.3 94.8 77.3 63.4 1843
DeepSeek-R1-Zero  71.0 86.7 95.9 73.3 50.0 1444

Codeforces Skill Level ELO Range

o : Newbie Up to 999
e A competitive programming

benchmark to give an ELO rating to a Pupil 1000-1199
programmer’s problem solving and Specialist 1400-1599
algorithmic

Expert 1600-1799
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£ Rejection )

Curated
Reasoning
Prompts

In theory, ~600k of only the best, most accurate
reasoning examples survive between this.
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DeepSeek-V3
SFT Data:

|

|

|
Non-Reasoning !
Domains 1
|

|

|

|

|

CoT Generation for
Non-Reasoning Tasks
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1. % Cold Start @

e Fine tune DeepSeek-V3- high quality human-readable CoT examples
1. A Reasoning-Oriented RL &

e RL w/ a focus on reasoning-intensive tasks (coding, math, science, logic)
1. @ Refined Reasoning Rejection Sampling SFT &

e Take DeepSeek-V3-Base (not Stage 2 Checkpoint) and combined dataset -

train for 2 epochs
Probably to avoid the rejection

SFT dataset and to better incorporate
capabilities
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e DeepSeek-Zero gave us a good blueprint, but can we fix its limitations?
PIPELINE:

1. % Cold Start @
e Fine tune DeepSeek-V3- high quality human-readable CoT examples
1. A Reasoning-Oriented RL &
e RL w/ a focus on reasoning-intensive tasks (coding, math, science, logic)
1. @ Refined Reasoning Rejection Sampling SFT &
e Take DeepSeek-V3-Base (not Stage 2 Checkpoint) and combined dataset -
train for 2 epochs

This is essentially knowledge distillation.
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e DeepSeek-Zero gave us a good blueprint, but can we fix its limitations?
PIPELINE:

1. #% Cold Start @
e Fine tune DeepSeek-V3- high quality human-readable CoT examples
1. A Reasoning-Oriented RL &
e RL w/ a focus on reasoning-intensive tasks (coding, math, science, logic)
® Refined Reasoning Rejection Sampling SFT &
e Take DeepSeek-V3-Base (not Stage 2 Checkpoint) and combined dataset -
train for 2 epochs
. 8 Alignment RL - Helpfulness, Harmlessness, & Reasoning in All Scenarios 2

—

—
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Knowledge Distillation

3.2, Distilled Model Evaluation

GPQA  LiveCode

Model AIME 2024 MATH-500 Diamond  Bench CodeForces
pass@]l cons@64 pass@] pass@] pass@] rating
GPT-40-0513 9.3 13.4 74.6 499 329 759
Claude-3.5-Sonnet-1022 16.0 26.7 78.3 65.0 38.9 717
OpenAl-ol1-mini 63.6 80.0 90.0 60.0 53.8 1820
QwQ-32B-Preview 50.0 60.0 90.6 54.5 419 1316
DeepSeek-R1-Distill-Qwen-1.5B 289 52.7 83.9 338 16.9 954
DeepSeek-R1-Distill-Qwen-7B 55.5 83.3 92.8 49.1 37.6 1189
DeepSeek-R1-Distill-Qwen-14B 69.7 80.0 93.9 59.1 53.1 1481
DeepSeek-R1-Distill-Qwen-32B 72.6 83.3 94.3 62.1 57.2 1691
DeepSeek-R1-Distill-Llama-8B 50.4 80.0 89.1 49.0 39.6 1205
DeepSeek-R1-Distill-Llama-70B 70.0 86.7 94.5 65.2 57.5 1633

Table 5 | Comparison of DeepSeek-R1 distilled models and other comparable models on
reasoning-related benchmarks.
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Failed Experiments

° - Perplexity Reward Viodel - a reward function that is designed to
evaluate and reward step-by-step reasoning processes
o A normal reward might be 0 or 1 for correct or not, but would reward individual steps

being correct. For example - solving an algebra problem would give partial credit to correct
steps towards solving it, even if wrong.

o Tries to encourage good behavior throughout the <think> tags rather than just the <answer>
tags.

° because:

o Challenging to define a fine-grain step in reasoning
Determining if an intermediate step is correct is hard

o Reward hacking
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Failed Experiments

e MCTS (Monte Carlo Tree Search) - a tree search algorithm to guide decision

making
e Utilized at test-time to enhance the model exploring solution space

° because:
o Language models have a huge search space as it’'s an unstructured space - setting search

depth limits risked getting stuck in local optima
o Couldn’t effectively create a value model to guide token-level search in complex reasoning

tasks
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