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● What’s the big deal?

● Controversy! Disputes! Conspiracies!

● How does it work?

● How do we train it?
○ Pipeline

■ Distillation!

○ GRPO in depth

● Cool experiments!
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Paper Claims

● Reinforcement Learning is Key for Reasoning - even without Supervised Fine 

Tuning

● DeepSeek-R1-Zero: A groundbreaking model demonstrating pure RL-driven 

reasoning

○ This experiment proved the importance of RL for reasoning

● DeepSeek-R1: A state-of-the-art reasoning model

○ Novel 4-Stage Training Pipeline for Reasoning LLMs

● Distilled DeepSeek-R1 Models: A suite of smaller, dense models that inherit the 

reasoning capabilities through knowledge distillation
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CHEAP CHEAP CHEAP

Model Input Cost per 1M tokens Output Cost per 1M tokens

DeepSeek R1 $0.14 $0.28

OpenAI GPT-4o $2.50 $10.00

OpenAI o1 $15.00 $60.00

OpenAI o3-mini $1.10 $4.40
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$560 billion goes *poof*
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● Bulk Export of Responses: someone bulk-exported model responses 

from OpenAI in late 2024. Unclear if this is linked to DeepSeek.

● Microsoft reportedly observed someone in China extracting large 

volumes of data from the OpenAI API (against ToS)

● Similar Responses: There are instances where DeepSeek provides 

responses that seem very similar to what ChatGPT would give, suggesting 

they learned from OpenAI's model.
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TinyZero



How do reasoning models work?

● Explicitly outputs its reasoning steps as it attempts to answer/solve their 

query
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Key Elements of a CoT Prompt:

● Explicitly ask for step-by-step reasoning

● Use phrases like "Let’s think step by step" or "Break down the problem"

● Include placeholder steps (e.g., "First... Second...")

● Request verification of the answer to encourage critical thinking



Isn’t this just Chain of Thought?

Yes / No

…and why?
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Isn’t this just Chain of Thought?

CoT

A clever prompting technique to elicit reasoning 

steps from instruct capable language models 

that aren’t trained to reason 

Prompted to produce things that sound logical

Reasoning

Is explicitly trained through reinforcement 

learning to produce correct reasoning steps

Trained to produce logical steps
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● DeepSeek-V3-Base - a previously created MoE model made with SFT

● Initial test (hence Zero) to see if a reasoning LLM can be taught purely

through reinforcement learning (GRPO)

● Shows that the typical SFT-then-RL approach wasn’t needed

● Emergent reasoning behaviors:
○ Self-Verification

○ Reflection

○ Longer Chain of Thoughts

DeepSeek-R1-Zero

Interrupts its chain 

of thought Self-identifies 

turning point in its 
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What is PPO?

● Clipped objective function to avoid large policy changes in the actor

This prevents large changes to the policy for any one action, 

creating a pessimistic lower bound

How much better than 

average did we perform for 

this action?

Probability the 

current policy 

would choose this 

action.

Probability the 

previous policy 

would choose this 

action.

Typically 

~0.2
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The math behind GRPO

Objective Function
(what we are optimizing)

Expectation
(aka average value over many iterations)

sample from distribution

Parameters
(weights)

set
(of G outputs)

Policy
(an old set of parameters)

This says:

Sample a query from a collection of prompts, creating a set of G outputs using the 

old policy, then take the average of its scores over many iterations to iteratively 

improve our weights.
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The math behind GRPO

Take the average

Probability ratio

Advantage

Here, advantage is looking at relative

improvement by comparing each 

response to the group’s average, 

driving model updates towards better 

relative responses

Also, by not having to train a 

critic model, we are more stable 

and more efficient!
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Take the average

Probability ratio

Advantage

How aggressive are our 

updates? Forms a trust region
KL 

Divergence

KL Divergence (Kullback–Leibler), also 

known as relative entropy, measures how 

different two probability distributions are.
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The math behind GRPO

Take the average

Probability ratio

Advantage

How aggressive are our 

updates? Forms a trust region
KL 

Divergence
Prior policy

New policy

KL divergence is seeing how different the 

new policy is from the old policy - we are 

penalizing large changes!



The math behind GRPO

Take the average

Probability ratio

Advantage

How aggressive are our 

updates? Forms a trust region
KL 

Divergence

This says:

Update its strategy based on how much better an action performed compared to the average (advantage). However, it only makes small, 
careful adjustments (trust region) by clipping the size of the update and discouraging big changes (KL divergence), then averages these 

adjustments over multiple experiences to find the best overall improvement.
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● Readability was poor, especially in its thinking
○ Lack of markdown formatting or structure in thinking tokens

○ Few steps noted

○ Jumps in logic

○ Redundant and unconventional text

■ Not human friendly/aligned

● Mixed language responses/thinking
○ No RL penalty, so it mixed languages as long as accuracy improved

● Reward hacking
○ RL resulted in focusing on the reward, not a useful model
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DeepSeek-R1-Zero Performance

AIME 2024

American Invitational Mathematics

Examination by the Mathematical 

Association of America (MAA)

● 15 question 3-hour high school mathematics 

exam

● Problem-solving skills and mathematical 

knowledge in:

○ Algebra

○ Geometry

○ Number theory

○ Combinatorics



DeepSeek-R1-Zero Performance

MATH-500

MATH-500 is a comprehensive 

mathematics benchmark that consists of 

500 problems spanning various 

mathematical topics, including:

● Algebra

● Calculus

● Probability

● Geometry



DeepSeek-R1-Zero Performance

GPQA Diamond

● Graduate-Level Google-Proof Q&A

Benchmark

● 448 multiple-choice questions 

covering:

● Biology

● Physics

● Chemistry

● Diamond includes an 

additional 198 PhD 

level science questions



DeepSeek-R1-Zero Performance

LiveCode Bench

● Diverse coding benchmark of 600+ 

high quality coding problems

● “Contamination Free” - problems 

LLM’s haven’t been trained on nor 

contains LLM generated solutions



DeepSeek-R1-Zero Performance

Codeforces

● A competitive programming 

benchmark to give an ELO rating to a 

programmer’s problem solving and 

algorithmic

Skill Level ELO Range

Newbie Up to 999

Pupil 1000-1199

Specialist 1400-1599

Expert 1600-1799
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DeepSeek-R1 Stage 3 - Refined Reasoning Rejection Sampling SFT

Curated 
Reasoning 
Prompts

Stage 2 
Checkpoint

Response

Response

Response

Response

Response

Response

Rejection 

DeepSeek-V3

Answer

Dataset

In theory, ~600k of only the best, most accurate 

reasoning examples survive between this.
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DeepSeek-R1 Stage 3 - Refined Reasoning Rejection Sampling SFT

Dataset
DeepSeek

V3

Dataset

DeepSeek-V3 
SFT Data:

Non-Reasoning 

Domains

CoT Generation for 

Non-Reasoning Tasks
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● DeepSeek-Zero gave us a good blueprint, but can we fix its limitations?

PIPELINE:

1. Cold Start 

● Fine tune DeepSeek-V3-Base high quality human-readable CoT examples

1. Reasoning-Oriented RL 🖩

● RL w/ a focus on reasoning-intensive tasks (coding, math, science, logic)

1. Refined Reasoning Rejection Sampling SFT 

● Take DeepSeek-V3-Base (not Stage 2 Checkpoint) and combined dataset -

train for 2 epochs

Probably to avoid overfitting the rejection 

SFT dataset and to better incorporate 

broader language capabilities
Speculation:
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PIPELINE:

1. Cold Start 

● Fine tune DeepSeek-V3-Base high quality human-readable CoT examples

1. Reasoning-Oriented RL 🖩

● RL w/ a focus on reasoning-intensive tasks (coding, math, science, logic)

1. Refined Reasoning Rejection Sampling SFT 

● Take DeepSeek-V3-Base (not Stage 2 Checkpoint) and combined dataset -

train for 2 epochs

This is essentially knowledge distillation.



DeepSeek-R1

● DeepSeek-Zero gave us a good blueprint, but can we fix its limitations?

PIPELINE:

1. Cold Start 
● Fine tune DeepSeek-V3-Base high quality human-readable CoT examples

1. Reasoning-Oriented RL 🖩
● RL w/ a focus on reasoning-intensive tasks (coding, math, science, logic)

1. Refined Reasoning Rejection Sampling SFT 
● Take DeepSeek-V3-Base (not Stage 2 Checkpoint) and combined dataset -

train for 2 epochs
1. Alignment RL - Helpfulness, Harmlessness, & Reasoning in All Scenarios 



Knowledge Distillation



Knowledge Distillation



Knowledge Distillation

DeepSeek-R1

qwen2.5 llama3.x 

-Math-1.5B -Math-7B -14B -32B -3.1-8B -3.3-70B-Instruct



Knowledge Distillation
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● PRM - Perplexity Reward Model - a reward function that is designed to 
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being correct. For example - solving an algebra problem would give partial credit to correct 

steps towards solving it, even if wrong.

○ Tries to encourage good behavior throughout the <think> tags rather than just the <answer>

tags.

● Abandoned because:
○ Challenging to define a fine-grain step in reasoning

○ Determining if an intermediate step is correct is hard

○ Reward hacking
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Failed Experiments

● MCTS (Monte Carlo Tree Search) - a tree search algorithm to guide decision 

making

● Utilized at test-time to enhance the model exploring solution space

● Abandoned because:
○ Language models have a huge search space as it’s an unstructured space - setting search 

depth limits risked getting stuck in local optima

○ Couldn’t effectively create a value model to guide token-level search in complex reasoning 

tasks
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